A robust Lagrangian-DNN method for a class of quadratic optimization problems
نویسندگان
چکیده
The Lagrangian-doubly nonnegative (DNN) relaxation has recently been shown to provide effective lower bounds for a large class of nonconvex quadratic optimization problems (QOPs) using the bisection method combined with first-order methods by Kim, Kojima and Toh in 2016. While the bisection method has demonstrated the computational efficiency, determining the validity of a computed lower bound for the QOP depends on a prescribed parameter ε > 0. To improve the performance of the bisection method for the Lagrangian-DNN relaxation, we propose a new technique that guarantees the validity of the computed lower bound at each iteration of the bisection method for any choice of ε > 0. It also accelerates the bisection method. Moreover, we present a method to retrieve a primal-dual pair of optimal solutions of the Lagrangian-DNN relaxation using the primal-dual interior-point method. As a result, the method provides a better lower bound and substantially increases the robustness as well as the effectiveness of the bisection method. Computational results on the binary QOPs, the multiple knapsack problems, the maximal stable set problems, and the quadratic assignment problems (QAPs) illustrate the robustness of the proposed method. In particular, a tight bound for QAPs with size n = 50 could be obtained.
منابع مشابه
A Lagrangian-DNN relaxation: a fast method for computing tight lower bounds for a class of quadratic optimization problems
We propose an efficient computational method for linearly constrained quadratic optimization problems (QOPs) with complementarity constraints based on their Lagrangian and doubly nonnegative (DNN) relaxation and first-order algorithms. The simplified Lagrangian-CPP relaxation of such QOPs proposed by Arima, Kim, and Kojima in 2012 takes one of the simplest forms, an unconstrained conic linear o...
متن کاملAugmented Lagrangian method for solving absolute value equation and its application in two-point boundary value problems
One of the most important topic that consider in recent years by researcher is absolute value equation (AVE). The absolute value equation seems to be a useful tool in optimization since it subsumes the linear complementarity problem and thus also linear programming and convex quadratic programming. This paper introduce a new method for solving absolute value equation. To do this, we transform a...
متن کاملDoubly Nonnegative Relaxations for Quadratic and Polynomial Optimization Problems with Binary and Box Constraints
We propose doubly nonnegative (DNN) relaxations for polynomial optimization problems (POPs) with binary and box constraints to find tight lower bounds for their optimal values using a bisection and projection (BP) method. This work is an extension of the work by Kim, Kojima and Toh in 2016 from quadratic optimization problems (QOPs) to POPs. We show how the dense and sparse DNN relaxations are ...
متن کاملCopositive Relaxation Beats Lagrangian Dual Bounds in Quadratically and Linearly Constrained Quadratic Optimization Problems
We study non-convex quadratic minimization problems under (possibly non-convex) quadratic and linear constraints, and characterize both Lagrangian and Semi-Lagrangian dual bounds in terms of conic optimization. While the Lagrangian dual is equivalent to the SDP relaxation (which has been known for quite a while, although the presented form, incorporating explicitly linear constraints, seems to ...
متن کاملAn Augmented Lagrangian Method for a Class of Lmi-constrained Problems in Robust Control Theory
We present a new approach to a class of non-convex LMI-constrained problem in robust control theory. The problems we consider may be recast as the minimization of a linear objective subject to linear matrix inequality (LMI) constraints in tandem with non-convex constraints related to rank conditions. We solve these problems using an extension of the augmented Lagrangian technique. The Lagrangia...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Comp. Opt. and Appl.
دوره 66 شماره
صفحات -
تاریخ انتشار 2017